Splits data repeats
(default: 30) times into training and test set
with a ratio of ratio
(default: 2/3) observations going into the training set.
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
Parameters
repeats
(integer(1)
)
Number of repetitions.ratio
(numeric(1)
)
Ratio of observations to put into the training set.
References
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069 .
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
Super class
mlr3::Resampling
-> ResamplingSubsampling
Active bindings
iters
(
integer(1)
)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Examples
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
subsampling = rsmp("subsampling", repeats = 2, ratio = 0.5)
subsampling$instantiate(task)
# Individual sets:
subsampling$train_set(1)
#> [1] 5 9 8 3 2
subsampling$test_set(1)
#> [1] 1 4 6 7 10
# Disjunct sets:
intersect(subsampling$train_set(1), subsampling$test_set(1))
#> integer(0)
# Internal storage:
subsampling$instance$train # list of index vectors
#> [[1]]
#> [1] 5 9 8 3 2
#>
#> [[2]]
#> [1] 3 8 9 6 10
#>