Skip to contents

Splits data into bootstrap samples (sampling with replacement). Hyperparameters are the number of bootstrap iterations (repeats, default: 30) and the ratio of observations to draw per iteration (ratio, default: 1) for the training set.

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("bootstrap")
rsmp("bootstrap")

Parameters

  • repeats (integer(1))
    Number of repetitions.

  • ratio (numeric(1))
    Ratio of observations to put into the training set.

References

Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069 .

See also

Super class

mlr3::Resampling -> ResamplingBootstrap

Active bindings

iters

(integer(1))
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingBootstrap$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)

# Instantiate Resampling
bootstrap = rsmp("bootstrap", repeats = 2, ratio = 1)
bootstrap$instantiate(task)

# Individual sets:
bootstrap$train_set(1)
#>  [1]  2  2  3  4  6  6  7  8  9 10
bootstrap$test_set(1)
#> [1] 1 5

# Disjunct sets:
intersect(bootstrap$train_set(1), bootstrap$test_set(1))
#> integer(0)

# Internal storage:
bootstrap$instance$M # Matrix of counts
#>        
#>         [,1] [,2]
#>    [1,]    0    0
#>    [2,]    2    0
#>    [3,]    1    2
#>    [4,]    1    2
#>    [5,]    0    0
#>    [6,]    2    2
#>    [7,]    1    2
#>    [8,]    1    1
#>    [9,]    1    1
#>   [10,]    1    0