Splits data into training and test sets using manually provided indices.
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
Super class
mlr3::Resampling
-> ResamplingCustom
Active bindings
iters
(
integer(1)
)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Methods
Method instantiate()
Instantiate this Resampling with custom splits into training and test set.
Arguments
task
Task
Mainly used to check iftrain_sets
andtest_sets
are feasible.train_sets
(list of
integer()
)
List with row ids for training, one list element per iteration. Must have the same length astest_sets
.test_sets
(list of
integer()
)
List with row ids for testing, one list element per iteration. Must have the same length astrain_sets
.
Examples
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
custom = rsmp("custom")
train_sets = list(1:5, 5:10)
test_sets = list(5:10, 1:5)
custom$instantiate(task, train_sets, test_sets)
custom$train_set(1)
#> [1] 1 2 3 4 5
custom$test_set(1)
#> [1] 5 6 7 8 9 10