A simple mlr3misc::Dictionary storing objects of class Resampling.
Each resampling has an associated help page, see mlr_resamplings_[id]
.
This dictionary can get populated with additional resampling strategies by add-on packages.
For a more convenient way to retrieve and construct resampling strategies, see rsmp()
/rsmps()
.
Format
R6::R6Class object inheriting from mlr3misc::Dictionary.
Methods
See mlr3misc::Dictionary.
S3 methods
as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary ->data.table::data.table()
Returns adata.table::data.table()
with columns "key", "label", "params", and "iters". Ifobjects
is set toTRUE
, the constructed objects are returned in the list column namedobject
.
See also
Sugar functions: rsmp()
, rsmps()
Other Dictionary:
mlr_learners
,
mlr_measures
,
mlr_task_generators
,
mlr_tasks
Other Resampling:
Resampling
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
Examples
as.data.table(mlr_resamplings)
#> Key: <key>
#> key label params iters
#> <char> <char> <list> <int>
#> 1: bootstrap Bootstrap ratio,repeats 30
#> 2: custom Custom Splits NA
#> 3: custom_cv Custom Split Cross-Validation NA
#> 4: cv Cross-Validation folds 10
#> 5: holdout Holdout ratio 1
#> 6: insample Insample Resampling 1
#> 7: loo Leave-One-Out NA
#> 8: repeated_cv Repeated Cross-Validation folds,repeats 100
#> 9: subsampling Subsampling ratio,repeats 30
mlr_resamplings$get("cv")
#> <ResamplingCV>: Cross-Validation
#> * Iterations: 10
#> * Instantiated: FALSE
#> * Parameters: folds=10
rsmp("subsampling")
#> <ResamplingSubsampling>: Subsampling
#> * Iterations: 30
#> * Instantiated: FALSE
#> * Parameters: ratio=0.6667, repeats=30