Skip to contents

A simple mlr3misc::Dictionary storing objects of class Learner. Each learner has an associated help page, see mlr_learners_[id].

This dictionary can get populated with additional learners by add-on packages. For an opinionated set of solid classification and regression learners, install and load the mlr3learners package. More learners are connected via https://github.com/mlr-org/mlr3extralearners.

For a more convenient way to retrieve and construct learners, see lrn()/lrns().

Format

R6::R6Class object inheriting from mlr3misc::Dictionary.

Methods

See mlr3misc::Dictionary.

S3 methods

Examples

as.data.table(mlr_learners)
#> Key: <key>
#>                    key                              label task_type
#>                 <char>                             <char>    <char>
#> 1:       classif.debug   Debug Learner for Classification   classif
#> 2: classif.featureless Featureless Classification Learner   classif
#> 3:       classif.rpart                Classification Tree   classif
#> 4:          regr.debug       Debug Learner for Regression      regr
#> 5:    regr.featureless     Featureless Regression Learner      regr
#> 6:          regr.rpart                    Regression Tree      regr
#>                                           feature_types   packages
#>                                                  <list>     <list>
#> 1:     logical,integer,numeric,character,factor,ordered       mlr3
#> 2: logical,integer,numeric,character,factor,ordered,...       mlr3
#> 3:               logical,integer,numeric,factor,ordered mlr3,rpart
#> 4:     logical,integer,numeric,character,factor,ordered mlr3,stats
#> 5: logical,integer,numeric,character,factor,ordered,... mlr3,stats
#> 6:               logical,integer,numeric,factor,ordered mlr3,rpart
#>                                                                   properties
#>                                                                       <list>
#> 1: hotstart_forward,internal_tuning,marshal,missings,multiclass,twoclass,...
#> 2: featureless,importance,missings,multiclass,selected_features,twoclass,...
#> 3:         importance,missings,multiclass,selected_features,twoclass,weights
#> 4:                                                          missings,weights
#> 5:                 featureless,importance,missings,selected_features,weights
#> 6:                             importance,missings,selected_features,weights
#>            predict_types
#>                   <list>
#> 1:         response,prob
#> 2:         response,prob
#> 3:         response,prob
#> 4: response,se,quantiles
#> 5: response,se,quantiles
#> 6:              response
mlr_learners$get("classif.featureless")
#> 
#> ── <LearnerClassifFeatureless> (classif.featureless): Featureless Classification
#> • Model: -
#> • Parameters: method=mode
#> • Packages: mlr3
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, character, factor, ordered,
#> POSIXct, and Date
#> • Encapsulation: none (fallback: -)
#> • Properties: featureless, importance, missings, multiclass, selected_features,
#> twoclass, and weights
#> • Other settings: use_weights = 'use'
lrn("classif.rpart")
#> 
#> ── <LearnerClassifRpart> (classif.rpart): Classification Tree ──────────────────
#> • Model: -
#> • Parameters: xval=0
#> • Packages: mlr3 and rpart
#> • Predict Types: [response] and prob
#> • Feature Types: logical, integer, numeric, factor, and ordered
#> • Encapsulation: none (fallback: -)
#> • Properties: importance, missings, multiclass, selected_features, twoclass,
#> and weights
#> • Other settings: use_weights = 'use'