A LearnerClassif for a classification tree implemented in rpart::rpart()
in package rpart.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
Parameters
Id | Type | Default | Levels | Range |
cp | numeric | 0.01 | \([0, 1]\) | |
keep_model | logical | FALSE | TRUE, FALSE | - |
maxcompete | integer | 4 | \([0, \infty)\) | |
maxdepth | integer | 30 | \([1, 30]\) | |
maxsurrogate | integer | 5 | \([0, \infty)\) | |
minbucket | integer | - | \([1, \infty)\) | |
minsplit | integer | 20 | \([1, \infty)\) | |
surrogatestyle | integer | 0 | \([0, 1]\) | |
usesurrogate | integer | 2 | \([0, 2]\) | |
xval | integer | 10 | \([0, \infty)\) |
References
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. doi:10.1201/9781315139470 .
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
Learner
,
LearnerClassif
,
LearnerRegr
,
mlr_learners
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_regr.debug
,
mlr_learners_regr.featureless
,
mlr_learners_regr.rpart
Super classes
mlr3::Learner
-> mlr3::LearnerClassif
-> LearnerClassifRpart
Methods
Method importance()
The importance scores are extracted from the model slot variable.importance
.
Returns
Named numeric()
.