Splits data into a training set and a test set.
Parameter ratio
determines the ratio of observation going into the training set (default: 2/3).
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
References
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069 .
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
Super class
mlr3::Resampling
-> ResamplingHoldout
Active bindings
iters
(
integer(1)
)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Examples
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
holdout = rsmp("holdout", ratio = 0.5)
holdout$instantiate(task)
# Individual sets:
holdout$train_set(1)
#> [1] 1 4 5 8 9
holdout$test_set(1)
#> [1] 2 3 6 7 10
# Disjunct sets:
intersect(holdout$train_set(1), holdout$test_set(1))
#> integer(0)
# Internal storage:
holdout$instance # simple list
#> $train
#> [1] 1 4 5 8 9
#>
#> $test
#> [1] 2 3 6 7 10
#>