Repeated Cross-Validation Resampling
Source:R/ResamplingRepeatedCV.R
mlr_resamplings_repeated_cv.Rd
Splits data repeats
(default: 10) times using a folds
-fold (default: 10) cross-validation.
The iteration counter translates to repeats
blocks of folds
cross-validations, i.e., the first folds
iterations belong to
a single cross-validation.
Iteration numbers can be translated into folds or repeats with provided methods.
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
References
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation, 20(2), 249–275. doi:10.1162/evco_a_00069 .
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_insample
,
mlr_resamplings_loo
,
mlr_resamplings_subsampling
Super class
mlr3::Resampling
-> ResamplingRepeatedCV
Active bindings
iters
(
integer(1)
)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Methods
Method folds()
Translates iteration numbers to fold numbers.
Arguments
iters
(
integer()
)
Iteration number.
Returns
integer()
of fold numbers.
Method repeats()
Translates iteration numbers to repetition numbers.
Arguments
iters
(
integer()
)
Iteration number.
Returns
integer()
of repetition numbers.
Examples
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
repeated_cv = rsmp("repeated_cv", repeats = 2, folds = 3)
repeated_cv$instantiate(task)
repeated_cv$iters
#> [1] 6
repeated_cv$folds(1:6)
#> [1] 1 2 3 1 2 3
repeated_cv$repeats(1:6)
#> [1] 1 1 1 2 2 2
# Individual sets:
repeated_cv$train_set(1)
#> [1] 3 6 8 5 7 10
repeated_cv$test_set(1)
#> [1] 1 2 4 9
# Disjunct sets:
intersect(repeated_cv$train_set(1), repeated_cv$test_set(1))
#> integer(0)
# Internal storage:
repeated_cv$instance # table
#> row_id rep fold
#> <int> <int> <int>
#> 1: 1 1 1
#> 2: 2 1 1
#> 3: 3 1 2
#> 4: 4 1 1
#> 5: 5 1 3
#> 6: 6 1 2
#> 7: 7 1 3
#> 8: 8 1 2
#> 9: 9 1 1
#> 10: 10 1 3
#> 11: 1 2 2
#> 12: 2 2 3
#> 13: 3 2 1
#> 14: 4 2 3
#> 15: 5 2 1
#> 16: 6 2 3
#> 17: 7 2 2
#> 18: 8 2 1
#> 19: 9 2 2
#> 20: 10 2 1
#> row_id rep fold