A simple mlr3misc::Dictionary storing objects of class Task.
Each task has an associated help page, see mlr_tasks_[id]
.
This dictionary can get populated with additional tasks by add-on packages, e.g. mlr3data, mlr3proba or mlr3cluster. mlr3oml allows to interact with OpenML.
For a more convenient way to retrieve and construct tasks, see tsk()
/tsks()
.
Format
R6::R6Class object inheriting from mlr3misc::Dictionary.
Methods
See mlr3misc::Dictionary.
S3 methods
as.data.table(dict, ..., objects = FALSE)
mlr3misc::Dictionary ->data.table::data.table()
Returns adata.table::data.table()
with columns "key", "label", "task_type", "nrow", "ncol", "properties", and the number of features of type "lgl", "int", "dbl", "chr", "fct" and "ord", respectively. Ifobjects
is set toTRUE
, the constructed objects are returned in the list column namedobject
.
See also
Sugar functions: tsk()
, tsks()
Extension Packages: mlr3data
Other Dictionary:
mlr_learners
,
mlr_measures
,
mlr_resamplings
,
mlr_task_generators
Other Task:
Task
,
TaskClassif
,
TaskRegr
,
TaskSupervised
,
TaskUnsupervised
,
mlr_tasks_boston_housing
,
mlr_tasks_breast_cancer
,
mlr_tasks_german_credit
,
mlr_tasks_iris
,
mlr_tasks_mtcars
,
mlr_tasks_penguins
,
mlr_tasks_pima
,
mlr_tasks_sonar
,
mlr_tasks_spam
,
mlr_tasks_wine
,
mlr_tasks_zoo
Examples
as.data.table(mlr_tasks)
#> Key: <key>
#> key label task_type nrow ncol properties
#> <char> <char> <char> <int> <int> <list>
#> 1: boston_housing Boston Housing Prices regr 506 18
#> 2: breast_cancer Wisconsin Breast Cancer classif 683 10 twoclass
#> 3: german_credit German Credit classif 1000 21 twoclass
#> 4: iris Iris Flowers classif 150 5 multiclass
#> 5: mtcars Motor Trends regr 32 11
#> 6: penguins Palmer Penguins classif 344 8 multiclass
#> 7: pima Pima Indian Diabetes classif 768 9 twoclass
#> 8: sonar Sonar: Mines vs. Rocks classif 208 61 twoclass
#> 9: spam HP Spam Detection classif 4601 58 twoclass
#> 10: wine Wine Regions classif 178 14 multiclass
#> 11: zoo Zoo Animals classif 101 17 multiclass
#> lgl int dbl chr fct ord pxc
#> <int> <int> <int> <int> <int> <int> <int>
#> 1: 0 3 12 0 2 0 0
#> 2: 0 0 0 0 0 9 0
#> 3: 0 3 0 0 14 3 0
#> 4: 0 0 4 0 0 0 0
#> 5: 0 0 10 0 0 0 0
#> 6: 0 3 2 0 2 0 0
#> 7: 0 0 8 0 0 0 0
#> 8: 0 0 60 0 0 0 0
#> 9: 0 0 57 0 0 0 0
#> 10: 0 2 11 0 0 0 0
#> 11: 15 1 0 0 0 0 0
task = mlr_tasks$get("penguins") # same as tsk("penguins")
head(task$data())
#> species bill_depth bill_length body_mass flipper_length island sex
#> <fctr> <num> <num> <int> <int> <fctr> <fctr>
#> 1: Adelie 18.7 39.1 3750 181 Torgersen male
#> 2: Adelie 17.4 39.5 3800 186 Torgersen female
#> 3: Adelie 18.0 40.3 3250 195 Torgersen female
#> 4: Adelie NA NA NA NA Torgersen <NA>
#> 5: Adelie 19.3 36.7 3450 193 Torgersen female
#> 6: Adelie 20.6 39.3 3650 190 Torgersen male
#> year
#> <int>
#> 1: 2007
#> 2: 2007
#> 3: 2007
#> 4: 2007
#> 5: 2007
#> 6: 2007
# Add a new task, based on a subset of penguins:
data = palmerpenguins::penguins
data$species = factor(ifelse(data$species == "Adelie", "1", "0"))
task = TaskClassif$new("penguins.binary", data, target = "species", positive = "1")
# add to dictionary
mlr_tasks$add("penguins.binary", task)
# list available tasks
mlr_tasks$keys()
#> [1] "boston_housing" "breast_cancer" "german_credit" "iris"
#> [5] "mtcars" "penguins" "penguins.binary" "pima"
#> [9] "sonar" "spam" "wine" "zoo"
# retrieve from dictionary
mlr_tasks$get("penguins.binary")
#> <TaskClassif:penguins.binary> (344 x 8)
#> * Target: species
#> * Properties: twoclass
#> * Features (7):
#> - int (3): body_mass_g, flipper_length_mm, year
#> - dbl (2): bill_depth_mm, bill_length_mm
#> - fct (2): island, sex
# remove task again
mlr_tasks$remove("penguins.binary")