Cassini Classification Task Generator
Source:R/TaskGeneratorCassini.R
mlr_task_generators_cassini.RdA TaskGenerator for the cassini task in mlbench::mlbench.cassini().
Dictionary
This TaskGenerator can be instantiated via the dictionary mlr_task_generators or with the associated sugar function tgen():
Parameters
| Id | Type | Default | Range |
| relsize1 | integer | 2 | \([1, \infty)\) |
| relsize2 | integer | 2 | \([1, \infty)\) |
| relsize3 | integer | 1 | \([1, \infty)\) |
See also
as.data.table(mlr_task_generators)for a table of available TaskGenerators in the running session (depending on the loaded packages).Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
Other TaskGenerator:
TaskGenerator,
mlr_task_generators,
mlr_task_generators_2dnormals,
mlr_task_generators_circle,
mlr_task_generators_friedman1,
mlr_task_generators_moons,
mlr_task_generators_peak,
mlr_task_generators_simplex,
mlr_task_generators_smiley,
mlr_task_generators_spirals,
mlr_task_generators_xor
Super class
mlr3::TaskGenerator -> TaskGeneratorCassini
Examples
generator = tgen("cassini")
plot(generator, n = 200)
task = generator$generate(200)
str(task$data())
#> Classes ‘data.table’ and 'data.frame': 200 obs. of 3 variables:
#> $ y : Factor w/ 3 levels "A","B","C": 1 1 1 1 1 1 1 1 1 1 ...
#> $ x1: num 0.266 0.997 -1.258 -0.525 -0.22 ...
#> $ x2: num -1.76 -1.17 -1.4 -1.5 -1.82 ...
#> - attr(*, ".internal.selfref")=<externalptr>