Uses all observations as training and as test set.
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
Resampling
,
mlr_resamplings
,
mlr_resamplings_bootstrap
,
mlr_resamplings_custom
,
mlr_resamplings_custom_cv
,
mlr_resamplings_cv
,
mlr_resamplings_holdout
,
mlr_resamplings_loo
,
mlr_resamplings_repeated_cv
,
mlr_resamplings_subsampling
Super class
mlr3::Resampling
-> ResamplingInsample
Public fields
iters
(
integer(1)
)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Examples
# Create a task with 10 observations
task = tsk("penguins")
task$filter(1:10)
# Instantiate Resampling
insample = rsmp("insample")
insample$instantiate(task)
# Train set equal to test set:
setequal(insample$train_set(1), insample$test_set(1))
#> [1] TRUE
# Internal storage:
insample$instance # just row ids
#> [1] 1 2 3 4 5 6 7 8 9 10