Binary classification measure defined as $$ \frac{\mathrm{TP} \cdot \mathrm{TN} - \mathrm{FP} \cdot \mathrm{FN}}{\sqrt{(\mathrm{TP} + \mathrm{FP}) (\mathrm{TP} + \mathrm{FN}) (\mathrm{TN} + \mathrm{FP}) (\mathrm{TN} + \mathrm{FN})}}. $$

Note

The score function calls mlr3measures::mcc() from package mlr3measures.

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("mcc")
msr("mcc")

Meta Information

  • Type: "binary"

  • Range: \([-1, 1]\)

  • Minimize: FALSE

  • Required prediction: response

See also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other classification measures: mlr_measures_classif.acc, mlr_measures_classif.auc, mlr_measures_classif.bacc, mlr_measures_classif.bbrier, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.dor, mlr_measures_classif.fbeta, mlr_measures_classif.fdr, mlr_measures_classif.fnr, mlr_measures_classif.fn, mlr_measures_classif.fomr, mlr_measures_classif.fpr, mlr_measures_classif.fp, mlr_measures_classif.logloss, mlr_measures_classif.mbrier, mlr_measures_classif.npv, mlr_measures_classif.ppv, mlr_measures_classif.prauc, mlr_measures_classif.precision, mlr_measures_classif.recall, mlr_measures_classif.sensitivity, mlr_measures_classif.specificity, mlr_measures_classif.tnr, mlr_measures_classif.tn, mlr_measures_classif.tpr, mlr_measures_classif.tp

Other binary classification measures: mlr_measures_classif.auc, mlr_measures_classif.bbrier, mlr_measures_classif.dor, mlr_measures_classif.fbeta, mlr_measures_classif.fdr, mlr_measures_classif.fnr, mlr_measures_classif.fn, mlr_measures_classif.fomr, mlr_measures_classif.fpr, mlr_measures_classif.fp, mlr_measures_classif.npv, mlr_measures_classif.ppv, mlr_measures_classif.prauc, mlr_measures_classif.precision, mlr_measures_classif.recall, mlr_measures_classif.sensitivity, mlr_measures_classif.specificity, mlr_measures_classif.tnr, mlr_measures_classif.tn, mlr_measures_classif.tpr, mlr_measures_classif.tp