Package index
-
Task
- Task Class
-
Learner
- Learner Class
-
Measure
- Measure Class
-
Resampling
- Resampling Class
-
Prediction
- Abstract Prediction Object
-
DataBackend
- DataBackend
-
DataBackendDataTable
- DataBackend for data.table
-
DataBackendMatrix
- DataBackend for Matrix
-
as_data_backend()
- Create a Data Backend
-
TaskClassif
- Classification Task
-
as_task_classif()
- Convert to a Classification Task
-
LearnerClassif
- Classification Learner
-
MeasureClassif
- Classification Measure
-
PredictionClassif
- Prediction Object for Classification
-
TaskRegr
- Regression Task
-
as_task_regr()
- Convert to a Regression Task
-
LearnerRegr
- Regression Learner
-
MeasureRegr
- Regression Measure
-
PredictionRegr
- Prediction Object for Regression
-
mlr_tasks
- Dictionary of Tasks
-
mlr_tasks_boston_housing
- Boston Housing Regression Task
-
mlr_tasks_breast_cancer
- Wisconsin Breast Cancer Classification Task
-
mlr_tasks_german_credit
- German Credit Classification Task
-
mlr_tasks_iris
- Iris Classification Task
-
mlr_tasks_mtcars
- Motor Trend Regression Task
-
mlr_tasks_penguins
- Palmer Penguins Data Set
-
mlr_tasks_pima
- Pima Indian Diabetes Classification Task
-
mlr_tasks_sonar
- Sonar Classification Task
-
mlr_tasks_spam
- Spam Classification Task
-
mlr_tasks_wine
- Wine Classification Task
-
mlr_tasks_zoo
- Zoo Classification Task
-
as_task()
as_tasks()
- Convert to a Task
-
convert_task()
- Convert a Task from One Type to Another
-
TaskGenerator
- TaskGenerator Class
-
mlr_task_generators
- Dictionary of Task Generators
-
mlr_task_generators_2dnormals
TaskGenerator2DNormals
- 2D Normals Classification Task Generator
-
mlr_task_generators_cassini
TaskGeneratorCassini
- Cassini Classification Task Generator
-
mlr_task_generators_circle
TaskGeneratorCircle
- Circle Classification Task Generator
-
mlr_task_generators_friedman1
TaskGeneratorFriedman1
- Friedman1 Regression Task Generator
-
mlr_task_generators_moons
TaskGeneratorMoons
- Moons Classification Task Generator
-
mlr_task_generators_simplex
TaskGeneratorSimplex
- Simplex Classification Task Generator
-
mlr_task_generators_smiley
TaskGeneratorSmiley
- Smiley Classification Task Generator
-
mlr_task_generators_spirals
TaskGeneratorSpirals
- Spiral Classification Task Generator
-
mlr_task_generators_xor
TaskGeneratorXor
- XOR Classification Task Generator
-
mlr_learners
- Dictionary of Learners
-
mlr_learners_classif.debug
LearnerClassifDebug
- Classification Learner for Debugging
-
mlr_learners_classif.featureless
LearnerClassifFeatureless
- Featureless Classification Learner
-
mlr_learners_classif.rpart
LearnerClassifRpart
- Classification Tree Learner
-
mlr_learners_regr.debug
LearnerRegrDebug
- Regression Learner for Debugging
-
mlr_learners_regr.featureless
LearnerRegrFeatureless
- Featureless Regression Learner
-
mlr_learners_regr.rpart
LearnerRegrRpart
- Regression Tree Learner
-
as_learner()
as_learners()
- Convert to a Learner
-
HotstartStack
- Stack for Hot Start Learners
-
default_fallback()
- Create a Fallback Learner
-
mlr_measures
- Dictionary of Performance Measures
-
mlr_measures_aic
MeasureAIC
- Akaike Information Criterion Measure
-
mlr_measures_bic
MeasureBIC
- Bayesian Information Criterion Measure
-
mlr_measures_classif.acc
- Classification Accuracy
-
mlr_measures_classif.auc
- Area Under the ROC Curve
-
mlr_measures_classif.bacc
- Balanced Accuracy
-
mlr_measures_classif.bbrier
- Binary Brier Score
-
mlr_measures_classif.ce
- Classification Error
-
mlr_measures_classif.costs
MeasureClassifCosts
- Cost-sensitive Classification Measure
-
mlr_measures_classif.dor
- Diagnostic Odds Ratio
-
mlr_measures_classif.fbeta
- F-beta Score
-
mlr_measures_classif.fdr
- False Discovery Rate
-
mlr_measures_classif.fn
- False Negatives
-
mlr_measures_classif.fnr
- False Negative Rate
-
mlr_measures_classif.fomr
- False Omission Rate
-
mlr_measures_classif.fp
- False Positives
-
mlr_measures_classif.fpr
- False Positive Rate
-
mlr_measures_classif.logloss
- Log Loss
-
mlr_measures_classif.mauc_au1p
- Multiclass AUC Scores
-
mlr_measures_classif.mauc_au1u
- Multiclass AUC Scores
-
mlr_measures_classif.mauc_aunp
- Multiclass AUC Scores
-
mlr_measures_classif.mauc_aunu
- Multiclass AUC Scores
-
mlr_measures_classif.mauc_mu
- Multiclass AUC Scores
-
mlr_measures_classif.mbrier
- Multiclass Brier Score
-
mlr_measures_classif.mcc
- Matthews Correlation Coefficient
-
mlr_measures_classif.npv
- Negative Predictive Value
-
mlr_measures_classif.ppv
- Positive Predictive Value
-
mlr_measures_classif.prauc
- Area Under the Precision-Recall Curve
-
mlr_measures_classif.precision
- Positive Predictive Value
-
mlr_measures_classif.recall
- True Positive Rate
-
mlr_measures_classif.sensitivity
- True Positive Rate
-
mlr_measures_classif.specificity
- True Negative Rate
-
mlr_measures_classif.tn
- True Negatives
-
mlr_measures_classif.tnr
- True Negative Rate
-
mlr_measures_classif.tp
- True Positives
-
mlr_measures_classif.tpr
- True Positive Rate
-
mlr_measures_debug_classif
MeasureDebugClassif
- Debug Measure for Classification
-
mlr_measures_elapsed_time
MeasureElapsedTime
mlr_measures_time_train
mlr_measures_time_predict
mlr_measures_time_both
- Elapsed Time Measure
-
mlr_measures_internal_valid_score
MeasureInternalValidScore
- Measure Internal Validation Score
-
mlr_measures_oob_error
MeasureOOBError
- Out-of-bag Error Measure
-
mlr_measures_regr.ktau
- Kendall's tau
-
mlr_measures_regr.mae
- Mean Absolute Error
-
mlr_measures_regr.mape
- Mean Absolute Percent Error
-
mlr_measures_regr.maxae
- Max Absolute Error
-
mlr_measures_regr.medae
- Median Absolute Error
-
mlr_measures_regr.medse
- Median Squared Error
-
mlr_measures_regr.mse
- Mean Squared Error
-
mlr_measures_regr.msle
- Mean Squared Log Error
-
mlr_measures_regr.pbias
- Percent Bias
-
mlr_measures_regr.pinball
- Average Pinball Loss
-
mlr_measures_regr.rae
- Relative Absolute Error
-
mlr_measures_regr.rmse
- Root Mean Squared Error
-
mlr_measures_regr.rmsle
- Root Mean Squared Log Error
-
mlr_measures_regr.rrse
- Root Relative Squared Error
-
mlr_measures_regr.rse
- Relative Squared Error
-
mlr_measures_regr.rsq
MeasureRegrRSQ
- R-Squared
-
mlr_measures_regr.sae
- Sum of Absolute Errors
-
mlr_measures_regr.smape
- Symmetric Mean Absolute Percent Error
-
mlr_measures_regr.srho
- Spearman's rho
-
mlr_measures_regr.sse
- Sum of Squared Errors
-
mlr_measures_selected_features
MeasureSelectedFeatures
- Selected Features Measure
-
mlr_measures_sim.jaccard
- Jaccard Similarity Index
-
mlr_measures_sim.phi
- Phi Coefficient Similarity
-
default_measures()
- Get the Default Measure
-
as_measure()
as_measures()
- Convert to a Measure
-
mlr_resamplings
- Dictionary of Resampling Strategies
-
mlr_resamplings_bootstrap
ResamplingBootstrap
- Bootstrap Resampling
-
mlr_resamplings_custom
ResamplingCustom
- Custom Resampling
-
mlr_resamplings_custom_cv
ResamplingCustomCV
- Custom Cross-Validation
-
mlr_resamplings_cv
ResamplingCV
- Cross-Validation Resampling
-
mlr_resamplings_holdout
ResamplingHoldout
- Holdout Resampling
-
mlr_resamplings_insample
ResamplingInsample
- Insample Resampling
-
mlr_resamplings_loo
ResamplingLOO
- Leave-One-Out Cross-Validation
-
mlr_resamplings_repeated_cv
ResamplingRepeatedCV
- Repeated Cross-Validation Resampling
-
mlr_resamplings_subsampling
ResamplingSubsampling
- Subsampling Resampling
-
as_resampling()
as_resamplings()
- Convert to a Resampling
-
resample()
- Resample a Learner on a Task
-
partition()
- Manually Partition into Training, Test and Validation Set
-
ResampleResult
- Container for Results of
resample()
-
as_result_data()
- Convert to ResultData
-
as_resample_result()
- Convert to ResampleResult
-
benchmark()
- Benchmark Multiple Learners on Multiple Tasks
-
benchmark_grid()
- Generate a Benchmark Grid Design
-
BenchmarkResult
- Container for Benchmarking Results
-
as_result_data()
- Convert to ResultData
-
as_benchmark_result()
- Convert to BenchmarkResult
-
as_benchmark_result()
- Convert to BenchmarkResult
-
as_data_backend()
- Create a Data Backend
-
as_learner()
as_learners()
- Convert to a Learner
-
as_measure()
as_measures()
- Convert to a Measure
-
as_prediction()
as_predictions()
- Convert to a Prediction
-
as_prediction_classif()
- Convert to a Classification Prediction
-
as_prediction_data()
- PredictionData
-
as_prediction_regr()
- Convert to a Regression Prediction
-
as_resample_result()
- Convert to ResampleResult
-
as_resampling()
as_resamplings()
- Convert to a Resampling
-
as_result_data()
- Convert to ResultData
-
as_task()
as_tasks()
- Convert to a Task
-
as_task_classif()
- Convert to a Classification Task
-
as_task_regr()
- Convert to a Regression Task
-
as_task_unsupervised()
as_tasks_unsupervised()
- Convert to an Unsupervised Task
-
install_pkgs()
extract_pkgs()
- Install (Missing) Packages
-
tsk()
tsks()
tgen()
tgens()
lrn()
lrns()
rsmp()
rsmps()
msr()
msrs()
set_validate()
- Syntactic Sugar for Object Construction
-
mlr_reflections
- Reflections for mlr3
-
set_threads()
- Set the Number of Threads
-
learner_unmarshal()
learner_marshal()
learner_marshaled()
marshal_model()
unmarshal_model()
is_marshaled_model()
- (Un)marshal a Learner
-
MeasureSimilarity
- Similarity Measure
-
assert_backend()
assert_task()
assert_tasks()
assert_learner()
assert_learners()
assert_learnable()
assert_predictable()
assert_measure()
assert_measures()
assert_resampling()
assert_resamplings()
assert_prediction()
assert_resample_result()
assert_benchmark_result()
assert_row_ids()
assert_validate()
- Assertion for mlr3 Objects
-
ResultData
- ResultData
-
create_empty_prediction_data()
check_prediction_data()
is_missing_prediction_data()
filter_prediction_data()
c(<PredictionDataClassif>)
c(<PredictionDataRegr>)
- Convert to PredictionData
-
predict(<Learner>)
- Predict Method for Learners
-
mlr_test_helpers
- Documentation of mlr3 test helpers
-
mlr3
mlr3-package
- mlr3: Machine Learning in R - Next Generation